Compound binding to the human RORγ LBD was assessed using the Human RORγ Assay System from Indigo Biosciences.


There are high unmet medical needs in the few established therapies for several autoimmune, inflammatory and metabolic diseases. Despite the diverse clinical manifestations of these diseases, Retinoic Acid Receptor-Related Orphan Receptors (RORs) regulate and contribute to the pathogenesis of these diseases through modulation of immune responses and lipid/glucose homeostasis. Only recently has the critical regulatory role of RORs been well-characterized and target validated in several animal models of some of these diseases. RORs are transcription factors which belong to the nuclear hormone receptor superfamily (Jetten (2009) Nucl. Recept. Signal., 7:e003; Jetten et al. (2013) Front Endocrinol. (Lausanne), 4:1; Jetten & Joo (2006) Adv. Dev. Biol.,16:313-355). The ROR subfamily consists of three major isoforms: RORα (NR1F1), RORβ (NR1F2), and RORγ (NR1F3), encoded by the RORA, RORB and RORC genes, respectively. RORs are multidomain proteins that contain four principal domains typical of nuclear receptors: a highly variable N-terminal A/B domain, a highly conserved DNA-binding domain (DBD), a ligand binding domain (LBD) that contains the ligand-dependent activation function-2 (AF-2), and a hinge domain between the DBD and LBD. Each ROR gene through alternative splicing and promoter usage generates several ROR isoforms that differ only in their amino-terminus. In humans, there are four RORα isoforms (RORα1-4), one RORβ1 isoform, and two RORγ isoforms (RORγ1 and RORγ2 [RORγt]) that are expressed in a highly tissue-specific manner.

To read the full article (patent application) click HERE.

Date of publication: 09 April 2015; Application Number: 14/394787

Inventor information: Anderson Gaweco (New York, NY, US); Jefferson W. Tilley(North Caldwell, NJ, US); John Walker (St. Charles, MO, US); Samantha Palmer (Brooklyn, NY, US); & James Blinn (Brooklyn, NY, US)

Tagged With: